PIG: [RFC] Quantitative Integration of Complex Systems: A New Approach to Health Metrics

Team Member Names:
Dr. Liu Chengyi
Chen Hongjun.

Short Summary of the Improvement Idea: Our project proposes a novel approach to health diagnostics by quantitatively integrating multiple physiological parameters using geometric means. This method provides a more integrated and holistic view of health, suitable for personalized medicine and aligns well with the privacy-centric computation needed in Web 3.0.

Questions and Answers:

Q: What is the existing target protocol you are hoping to improve or enhance? A: The current healthcare diagnostic systems primarily use disjointed individual biomarkers. We aim to enhance this by integrating these markers into a unified health metric using geometric means.

Q: What is the core idea or insight about the potential improvement you want to pursue? A: By integrating various health parameters (like heart rate variability, pulse wave, and blood pressure), we can provide a more comprehensive health status that reflects both physical and mental health dimensions.

Q: What is your discovery methodology for investigating the current state of the target protocol? A: We plan to use a combination of data analysis from existing health records, expert interviews with healthcare professionals, and current research on integrative health metrics.

Q: In what form will you prototype your improvement idea? A: We will develop a software prototype that can calculate the integrated health metric from user-provided health data. This will be accompanied by a mobile app for ease of use and accessibility.

Q: How will you field-test your improvement idea? A: We will conduct a pilot study with a controlled group of volunteers, monitoring their health using our app and comparing outcomes against traditional health assessments.

Q: Who will be able to judge the quality of your output? A: Health data scientists and medical professionals specializing in diagnostic technologies and integrative health will be ideal judges for our project.

Q: How will you publish and evangelize your improvement idea? A: We plan to publish our findings in peer-reviewed health technology journals, present at relevant conferences, and release the software and app as open-source tools to encourage widespread adoption and feedback.

Q: What is the success vision for your idea? A: Our vision is successful if we can demonstrate that our integrated health metric provides a more predictive and comprehensive measure of health than traditional methods, leading to better personal health management and outcomes.

改进想法简述: 我们的项目提出了一种新的健康诊断方法,通过使用几何平均数定量整合多个生理参数。这种方法为健康提供了更加综合和全面的视角,适合个性化医疗,并符合Web 3.0中对隐私计算的需求。


问:您希望改进或增强哪个现有目标协议? 答:当前的健康诊断系统主要使用分离的个别生物标志物。我们的目标是通过将这些标志物整合成统一的健康指标来进行改进。

问:您想追求的潜在改进的核心思想或洞见是什么? 答:通过整合各种健康参数(如心率变异性、脉搏波和血压),我们可以提供更全面的健康状态,这反映了身体和心理健康的各个维度。

问:您调查目标协议当前状态的发现方法是什么? 答:我们计划使用现有健康记录的数据分析、与医疗保健专业人士的专家访谈和关于综合健康度量的当前研究相结合的方法。

问:您将如何原型化您的改进想法? 答:我们将开发一个软件原型,能够从用户提供的健康数据中计算出综合健康指标。这将伴随一个移动应用程序以提高易用性和可访问性。

问:您将如何现场测试您的改进想法? 答:我们将与一组受控的志愿者进行试点研究,使用我们的应用程序监测他们的健康,并将结果与传统健康评估相比较。

问:谁能够评判您的输出质量? 答:健康数据科学家和专门从事诊断技术及综合健康的医疗专业人士将是我们项目的理想评审。

问:您将如何发布和宣传您的改进想法? 答:我们计划在同行评审的健康技术期刊上发表我们的研究成果,参加相关会议,并以开源工具的形式发布软件和应用程序,以鼓励广泛的采用和反馈。

问:您的成功愿景是什么? 答:如果我们能证明我们的综合健康指标比传统方法提供更具预测性和全面的健康度量,从而带来更好的个人健康管理和结果,那么我们的愿景就实现了。


1 Like